博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Apache Beam WordCount编程实战及源码解读
阅读量:5833 次
发布时间:2019-06-18

本文共 5793 字,大约阅读时间需要 19 分钟。

hot3.png

概述:Apache Beam WordCount编程实战及源码解读,并通过intellij IDEA和terminal两种方式调试运行WordCount程序,Apache Beam对大数据的批处理和流处理,提供一套先进的统一的编程模型,并可以运行大数据处理引擎上。完整项目Github源码

负责公司大数据处理相关架构,但是具有多样性,极大的增加了开发成本,急需统一编程处理,Apache Beam,一处编程,处处运行,故将折腾成果分享出来。

1.Apache Beam编程实战–前言,Apache Beam的特点与关键概念。

Apache Beam 于2017年1月10日成为Apache新的顶级项目。

1.1.Apache Beam 特点:

统一:对于批处理和流媒体用例使用单个编程模型。
方便:支持多个pipelines环境运行,包括:Apache Apex, Apache Flink, Apache Spark, 和 Google Cloud Dataflow。
可扩展:编写和分享新的SDKs,IO连接器和transformation库 
部分翻译摘自官网:Apacher Beam 官网
1.2.Apache Beam关键概念:
1.2.1.Apache Beam SDKs
主要是开发API,为批处理和流处理提供统一的编程模型。目前(2017)支持JAVA语言,而Python正在紧张开发中。

1.2.2. Apache Beam Pipeline Runners(Beam的执行器/执行者们),支持Apache Apex,Apache Flink,Apache Spark,Google Cloud Dataflow多个大数据计算框架。可谓是一处Apache Beam编程,多计算框架运行。

1.2.3. 他们的对如下的支持情况详见

2.Apache Beam编程实战–Apache Beam源码解读
基于maven,intellij IDEA,pom.xm查看 完整项目Github源码 。直接通过IDEA的项目导入功能即可导入完整项目,等待MAVEN下载依赖包,然后按照如下解读步骤即可顺利运行。

2.1.源码解析-Apache Beam 数据流处理原理解析:

关键步骤:

创建Pipeline

将转换应用于Pipeline
读取输入文件
应用ParDo转换
应用SDK提供的转换(例如:Count)
写出输出
运行Pipeline

2.2.源码解析,完整项目Github源码,附WordCount,pom.xml等
/**
 * MIT.
 * Author: wangxiaolei(王小雷).
 * Date:17-2-20.
 * Project:ApacheBeamWordCount.
 */

import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.transforms.Aggregator;
import org.apache.beam.sdk.transforms.Count;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.PTransform;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.transforms.SimpleFunction;
import org.apache.beam.sdk.transforms.Sum;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;

public class WordCount {

    /**

     *1.a.通过Dofn编程Pipeline使得代码很简洁。b.对输入的文本做单词划分,输出。
     */
    static class ExtractWordsFn extends DoFn<String, String> {
        private final Aggregator<Long, Long> emptyLines =
                createAggregator("emptyLines", Sum.ofLongs());

        @ProcessElement

        public void processElement(ProcessContext c) {
            if (c.element().trim().isEmpty()) {
                emptyLines.addValue(1L);
            }

            // 将文本行划分为单词

            String[] words = c.element().split("[^a-zA-Z']+");
            // 输出PCollection中的单词
            for (String word : words) {
                if (!word.isEmpty()) {
                    c.output(word);
                }
            }
        }
    }

    /**

     *2.格式化输入的文本数据,将转换单词为并计数的打印字符串。
     */
    public static class FormatAsTextFn extends SimpleFunction<KV<String, Long>, String> {
       
        public String apply(KV<String, Long> input) {
            return input.getKey() + ": " + input.getValue();
        }
    }
    /**
     *3.单词计数,PTransform(PCollection Transform)将PCollection的文本行转换成格式化的可计数单词。
     */
    public static class CountWords extends PTransform<PCollection<String>,
            PCollection<KV<String, Long>>> {
       
        public PCollection<KV<String, Long>> expand(PCollection<String> lines) {

            // 将文本行转换成单个单词

            PCollection<String> words = lines.apply(
                    ParDo.of(new ExtractWordsFn()));

            // 计算每个单词次数

            PCollection<KV<String, Long>> wordCounts =
                    words.apply(Count.<String>perElement());

            return wordCounts;

        }
    }

    /**

     *4.可以自定义一些选项(Options),比如文件输入输出路径
     */
    public interface WordCountOptions extends PipelineOptions {

        /**

         * 文件输入选项,可以通过命令行传入路径参数,路径默认为gs://apache-beam-samples/shakespeare/kinglear.txt
         */
        @Description("Path of the file to read from")
        @Default.String("gs://apache-beam-samples/shakespeare/kinglear.txt")
        String getInputFile();
        void setInputFile(String value);

        /**

         * 设置结果文件输出路径,在intellij IDEA的运行设置选项中或者在命令行中指定输出文件路径,如./pom.xml
         */
        @Description("Path of the file to write to")
        @Required
        String getOutput();
        void setOutput(String value);
    }
    /**
     * 5.运行程序
     */
    public static void main(String[] args) {
        WordCountOptions options = PipelineOptionsFactory.fromArgs(args).withValidation()
                .as(WordCountOptions.class);
        Pipeline p = Pipeline.create(options);

        p.apply("ReadLines", TextIO.Read.from(options.getInputFile()))

                .apply(new CountWords())
                .apply(MapElements.via(new FormatAsTextFn()))
                .apply("WriteCounts", TextIO.Write.to(options.getOutput()));

        p.run().waitUntilFinish();

    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
3.支持Spark,Flink,Apex等大数据数据框架来运行该WordCount程序。完整项目Github源码(推荐,注意pom.xml模块加载是否成功,在工具中开发大数据程序,利于调试,开发体验较好)
3.1.intellij IDEA(社区版)中Spark大数据框架运行Pipeline计算程序
Spark运行

设置VM options

-DPspark-runner

1
设置Programe arguments

--inputFile=pom.xml --output=counts

1

3.2.intellij IDEA(社区版)中Apex,Flink等支持的大数据框架均可运行WordCount的Pipeline计算程序,完整项目Github源码
Apex运行

设置VM options

-DPapex-runner

1
设置Programe arguments

--inputFile=pom.xml --output=counts

1
Flink运行等等

设置VM options

-DPflink-runner

1
设置Programe arguments

--inputFile=pom.xml --output=counts

1
4.终端运行(Terminal)(不推荐,第一次下载过程很慢,开发体验较差)
4.1.以下命令是下载官方示例源码,第一次运行下载较慢,如果失败了就多运行几次,(推荐下载,完整项目Github源码)直接用上述解读在intellij IDEA中运行。
mvn archetype:generate       -DarchetypeRepository=https://repository.apache.org/content/groups/snapshots       -DarchetypeGroupId=org.apache.beam       -DarchetypeArtifactId=beam-sdks-java-maven-archetypes-examples       -DarchetypeVersion=LATEST       -DgroupId=org.example       -DartifactId=word-count-beam       -Dversion="0.1"       -Dpackage=org.apache.beam.examples       -DinteractiveMode=false
1
2

4.2.打包并运行
mvn compile exec:java -Dexec.mainClass=org.apache.beam.examples.WordCount      -Dexec.args="--runner=SparkRunner --inputFile=pom.xml --output=counts" -Pspark-runner
1

4.3.成功运行结果
4.3.1.显示运行成功

4.3.2.WordCount输出计算结果

--------------------- 

 

转载于:https://my.oschina.net/xiaominmin/blog/3056476

你可能感兴趣的文章
生成随机图片验证码
查看>>
Python基础班---第一部分(基础)---Python基础知识---认识Python
查看>>
利用JCom调用MS Office或者Acrobat API转换文档为PDF(转)
查看>>
JAVA MAC 配置
查看>>
假如时光倒流,我会这么学习Java
查看>>
input标签实现让光标不出现!
查看>>
解决跨域问题(配置文件)
查看>>
Android学习笔记:Android向服务器发送请求时的中文乱码问题
查看>>
UVALive5583 UVA562 Dividing coins
查看>>
CCF201409-3 字符串匹配(解法二)(100分)
查看>>
I00037 亏数(Deficient number)
查看>>
温州医保 药店购药流程
查看>>
主引导记录MBR
查看>>
Spring : JPA的单独使用
查看>>
MySQL中的完整性约束
查看>>
方便的CSS和jQuery下拉菜单解决方案
查看>>
【笔记】上传图片和音频
查看>>
20145213《网络对抗》逆向及Bof基础
查看>>
ADO.NET两种事务处理方法
查看>>
java经典程序100例
查看>>